中图网文创礼盒,买2个减5元
欢迎光临中图网 请 | 注册
> >>
废弃塑料在超临界水中的资源化利用

废弃塑料在超临界水中的资源化利用

作者:金辉
出版社:科学出版社出版时间:2023-06-01
开本: 其他 页数: 280
本类榜单:工业技术销量榜
¥174.2(6.8折)?

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

00:00:00
中 图 价:¥193.5(7.5折)定价  ¥258.0 登录后可看到会员价
加入购物车 收藏
运费6元,全场折上9折期间 满39元包邮
?快递不能达地区使用邮政小包,运费14元起
云南、广西、海南、新疆、青海、西藏六省,部分地区快递不可达
本类五星书更多>

废弃塑料在超临界水中的资源化利用 版权信息

废弃塑料在超临界水中的资源化利用 本书特色

希望引入新技术来解决现有废弃塑料处理问题,为相关领域的从业者和科研人员提供新的思路

废弃塑料在超临界水中的资源化利用 内容简介

随着科学技术的发展,塑料制品给社会带来了巨大便利,然而塑料制品巨大用量的直接结果是塑料废弃物的急剧增加,严重威胁到生态环境和人类社会的健康发展。传统塑料处理技术如填埋、焚烧、造粒再生、热解等,存在着污染环境、资源浪费、再生制品性能差、成本高等问题。众所周知,超临界水具有较高的扩散性和溶解度,较低的介电常数和粘度,近年来,超临界水处理技术在化石能源高效清洁利用方面得到了广泛应用。在这本书中,我们将从*基本的东西开始,首优选行废弃塑料现状及危害、传统处理方法的弊端、超临界水处理废弃塑料的原理、工艺流程等基础知识的普及。随后深入到主题,总结了前人的研究成果,重点介绍了超临界水气化塑料、液化塑料、污染物共处理、二氧化碳固定等方面的实验研究和模型建立,展示了超临界水处理废弃塑料技术的近期新实验方法和研究成果。这本书集中提供了超临界水在废弃塑料资源化利用方面的研究工作,希望引入新技术来解决现有废弃塑料处理问题,为相关领域的从业者和科研人员提供新的思路,为该技术的工业应用提供实验数据和理论依据,推动废弃塑料利用行业的快速发展。

废弃塑料在超临界水中的资源化利用 目录

Contents List of figures ix List of tables xix Foreword xxi Acknowledgement xxiii Abbreviations xxv 1.Background introduction 1 1.1 Current situation and hazards of plastic waste 1 1.1.1 Pollution to the natural environment 2 1.1.2 A threat to human health 4 1.1.3 Cause a waste of resources 5 1.2 Traditional treatment methods6 1.2.1 Landfill treatment 7 1.2.2 Mechanical recovery 7 1.2.3 Incineration method 8 1.2.4 Thermal decomposition 8 1.3 Supercritical water technology 9 1.3.1 Supercritical water characteristics 9 1.3.2 Resource utilization of waste plastics in supercritical water 10 References 20 2.Analysis of types of plastics 29 2.1 Introduction to raw materials 29 2.1.1 Polycarbonate plastic 29 2.1.2 Polypropylene plastic 29 2.1.3 Acrylonitrile butadiene styrene plastic 29 2.1.4 Polyethylene terephthalate plastic 31 2.1.5 High-impaa polystyrene plastic 31 2.1.6 Polystyrene plastic 31 2.1.7 Polyethylene plastic 32 2.1.8 Urea—formaldehyde plastic 32 2.1.9 Circuit board 32 2.1.10 Lignite 33 2.1.11 Soda lignin 33 2.1.12 Artificial seawater 33 2.1.13 Formic add and hydrochloric acid solvent 33 2.2 Material characterization 34 2.2.1 Elemental and proximate analysis 34 2.2.2 Thermogravimetric analysis 34 2.3 Experimental bench 40 2.3.1 Quartz tube reactor 40 2.3.2 Batch kettle reactor 41 2.4 Product analysis 42 2.4.1 Gas phase products 42 2.4.2 Liquid phase products 43 2.4.3 Solid phase products 45 References 46 3.Resource utilization of thermoplastics in supercritical water 47 3.1 Gasification 47 3.1.1 Experimental investigation on gasification characteristics of polycarbonate microplastics in supercritical water 47 3.1.2 Experimental study on gasification performance of polypropylene plastics in supercritical water 58 3.1.3 Experimental investigation on in-situ hydrogenation induced gasification characteristics of acrylonitrile butadiene styrene microplastics in supercritical water 74 3.1.4 Experimental investigation on gasification characteristics of polyethylene terephthalate microplastics in supercritical water 85 3.1.5 Experimental investigation on gasification characteristics of high impact polystyrene plastics in supercritical water 99 3.2 Liquefaction 110 3.2.1 Hydrothermal liquefaction of polycarbonate plastics in sub-/supercritical water and an exploration of reaction pathways 110 3.3 Liquefaction reaction pathways exploration 123 3.3.1 Liquefaction kinetics of polycarbonate 126 3.4 Carbon dioxide fixation 141 3.4.1 In the supercritical water/C02 environment 141 3.4.2 In C02 environment 147 3.5 Coordinated treatment of pollutants 157 3.5.1 Hydrogen/methane production from supercritical water gasification of lignite coal with plastic waste blends 157 3.5.2 Cogasification of plastic wastes and soda lignin in supercritical water 169 3.6 Preparation of hydrophobic materials 182 3.6.1 Hydrophobic behavior 183 3.6.2 Microstructure 186 3.6.3 Functional groups 191 References 193 4.Resource utilization of thermosetting plastics in supercritical water 201 4.1 Hydrogen-rich syngas production by gasification of urea—formaldehyde plastics in supercritical water 201 4.1.1 Effect of reaction temperature 201 4.1.2 Effect of reaction time 202 4.1.3 Effect of feedstock mass fraction 203 4.1.4 Effect of reaction pressure 204 4.1.5 Compared with the polystyrene plastics 205 4.1.6 Reaction analysis 207 4.1.7 Kinetic study 207 4.1.8 Conclusions 209 4.2 Resource utilization of circuit boards 210 4.2.1 Effect of reaction temperature 210 4.2.2 Effect of the reaction time 215 4.2.3 Effect of feedstock concentration 219 4.2.4 Effect of additive 220 4.2.5 Conclusion 222 References 223 5.Development prospects for resource utilization of waste plastics 227 5.1 Necessity of recycling waste plastics 227 5.1.1 Biodiversity conservation 228 5.1.2 Maintaining soil fertility 229 5.1.3 Saving resources 231 5.2 Comprehensive treatment countermeasures of waste plastics 232 5.2.1 Policy 232 5.2.2 General situation of domestic and foreign waste plastic treatment 237 5.2.3 Existing shortcomings 239 5.2.4 Improvement measures 240 5.3 Prospect of waste plastics treatment with supercritical water 242 5.3.1 Existing problems 243 5.3.2 Future development direction 244 References 245 Index 249 List of figures Figure 1.1 Global annual production of plastic.1 Figure 1.2 The transfer of microplastic in different environments.3 Figure 1.3 The formation and influence of microplastic in the ocean.3 Figure 1.4 Main treatment methods for waste plastic.6 Figure 2.1 Chemical structure of(A)BPA;(B)DPC;(C)PC.BPA,bisphenol A;30 DPC,diphenyl carbonate;PC,polycarbonate. Figure 2.2 Molecular structure of ABS plastic here.ABS,acrylonitrile butadiene styrene.30 Figure 2.3 Chemical structure of polyethylene terephthalate(PET).31 Figure 2.4 Molecular structure of HIPS plastic.HIPS,high-impact polystyrene.31 Figure 2.5 Molecular structure of PS plastic.PS,polymer synthesized.32 Figure 2.6 Chemical structures of(A)hydroxymethylurea;(B)1,3-32 bishydroxym
展开全部
商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服