超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册

精通Java机器学习

作者:UdayKamath
出版社:东南大学出版社出版时间:2018-10-01
开本: 24cm 页数: 21,519页
中 图 价:¥36.7(3.4折) 定价  ¥108.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口
有划线标记、光盘等附件不全详细品相说明>>
本类五星书更多>

精通Java机器学习 版权信息

精通Java机器学习 本书特色

  《精通Java机器学习(影印版)》将为你介绍关于机器学习的一批先进技术,包括分类、聚类、异常检测、流学习、主动学习、半监督学习、概率图模型、文本挖掘、深度学习以及大数据批和流机器学习。每章都有说明性的示例和真实案例,展示了如何利用基于Java的工具来运用这些新技术。

精通Java机器学习 内容简介

  《精通Java机器学习(影印版)》将为你介绍关于机器学习的一批先进技术,包括分类、聚类、异常检测、流学习、主动学习、半监督学习、概率图模型、文本挖掘、深度学习以及大数据批和流机器学习。每章都有说明性的示例和真实案例,展示了如何利用基于Java的工具来运用这些新技术。

精通Java机器学习 目录

Preface Chapter 1: Machine Learning Review Machine learning - history and definition What is not machine learning Machine learning - concepts and terminology Machine learning - types and subtypes Datasets used in machine learning Machine learning applications Practical issues in machine learning Machine learning - roles and process Roles Process Machine learning -tools and datasets Datasets Summary Chapter 2: Practical Approach to Real-World Supervised Learning Formal description and notation Data quality analysis Descriptive data analysis Basic label analysis Basic feature analysis Visualization analysis Univariate feature analysis Multivariate feature analysis Data transformation and preprocessing Feature construction Handling missing values Outliers Discretization Data sampling Is sampling needed Undersampling and oversampling Training, validation, and test set Feature relevance analysis and dimensionality reduction Feature search techniques Feature evaluation techniques Filter approach Wrapper approach Embedded approach Model building Linear models Linear Regression Naive Bayes Logistic Regression Non-linear models Decision Trees K-Nearest Neighbors (KNN) Support vector machines (SVM) Ensemble learning and meta learners Bootstrap aggregating or bagging Boosting Model assessment, evaluation, and comparisons Model assessment Model evaluation metrics Confusion matrix and related metrics ROC and PRC curves Gain charts and lift curves Model comparisons Comparing two algorithms Comparing multiple algorithms Case Study - Horse Colic Classification Business problem Machine learning mapping Data analysis Label analysis Features analysis Supervised learning experiments Weka experiments RapidMiner experiments Results, observations, and analysis Summary References Chapter 3: Unsupervised Machine Learninq Techniques …… Chapter 4: Semi-Supervised and Active Learning Chapter 5: Real-Time Stream Machine Learning Chapter 6: Probabilistic Graph Modeling Chapter 7: Deep Learning Chapter 8: Text Mining and Natural Language Processing Chapter 9: Bia Data Machine Learnina - The Final Frontier Appendix A: Linear Algebra Appendix B: Probability Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服