超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
半导体物理性能手册-第1卷

半导体物理性能手册-第1卷

出版社:哈尔滨工业大学出版社出版时间:2014-04-01
开本: 16开 页数: 344
本类榜单:工业技术销量榜
¥57.2(2.9折)?

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

中 图 价:¥104.9(5.3折)定价  ¥198.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口
有划线标记、光盘等附件不全详细品相说明>>
本类五星书更多>

半导体物理性能手册-第1卷 版权信息

半导体物理性能手册-第1卷 本书特色

《半导体物理性能手册(第1卷)(英文版)》系springer手册精选原版系列。《半导体物理性能手册(第1卷)(英文版)》主要包括diamond(c)、silicon(si)、germanium(c)、gray tin(a—sn)、cubic silicon carbide(3c—sic)、hexagonal silicon carbide(2h—,4h—,6h—sic,etc.)、rhombohedral silicon carbide(15r—,21r—,24r—sic,etc.)等内容。

半导体物理性能手册-第1卷 内容简介

足立贞夫所著的《半导体物理性能手册》介绍了各族半导体、化合物半导体的物理性能,包括:StructuralProperties结构特性ThermalProperties热学性质ElasticProperties弹性性质PhononsandLatticeVibronicProperties声子与晶格振动性质CollectiveEffectsandRelatedProperties集体效应及相关性质Energy-BandStructure:Energy-BandGaps能带结构:能带隙Energy-BandStructure:ElectronandHoleEffectiveMasses能带结构:电子和空穴的有效质量ElectronicDeformationPotential电子形变势ElectronAffinityandSchottkyBarrierHeight电子亲和能与肖特基势垒高度OpticalProperties光学性质Elastooptic,Electrooptic,andNonlinearOpticalProperties弹光、电光和非线性光学性质CartierTransportProperties载流子输运性质、适用对象包括材料、微电子学、电子科学与技术等专业的本科生和研究生,以及从事半导体研究的专业人员。

半导体物理性能手册-第1卷 目录

preface 
acknowledgments 
contents of other volumes 
1 diamond (c) 
1.1 structural properties 
1.1.1 ionicity 
1.1.2 elemental isotopic abundance and molecular weight 
1.1.3 crystal structure and space group 
1.1.4 lattice constant and its related parameters 
1.1.5 structural phase transition 
1.1.6 cleavage plane 
1.2 thermal properties 
1.2.1 melting point and its related parameters 
1.2.2 specific heat 
1.2.3 debye temperature 
1.2.4 thermal expansion coefficient 
1.2.5 thermal conductivity and diffusivity 
1.3 elastic properties 
1.3.1 elastic constant 
1.3.2 third—order elastic constant 
1.3.3 young's modulus, poisson's ratio, and similar 
1.3.4 microhardness 
1.3.5 sound velocity 
1.4 phonons and lattice vibronic properties 
1.4.1 phonon dispersion relation 
1.4.2 phonon frequency 
1.4.3 mode gruneisen parameter 
1.4.4 phonon deformation potential 
1.5 collective effects and related properties 
1.5.1 piezoelectric constant 
1.5.2 frohlich coupling constant 
1.6 energy—band structure: energy—band gaps 
1.6.1 basic properties 
1.6.2 e0—gap region 
1.6.3 higher—lying direct gap 
1.6.4 lowest indirect gap 
1.6.5 conduction—valley energy separation 
1.6.6 direct—indirect—gap transition pressure 
1.7 energy—band structure: electron and hole effective masses 
1.7.1 electron effective mass: γ valley 
1.7.2 electron effective mass: satellite valley 
1.7.3 hole effective mass 
1.8 electronic deformation potential 
1.8.1 intravalley deformation potential: γ point 
1.8.2 intravalley deformation potential: high—symmetry points 
1.8.3 intervalley deformation potential 
1.9 electron affinity and schottky barrier height 
1.9.1 electron affinity 
1.9.2 schottky barrier height 
1.10 optical properties 
1.10.1 summary of optical dispersion relations 
1.10.2 the reststrahlen region 
1.10.3 at or near the fundamental absorption edge 
1.10.4 the interband transition region 
1.10.5 free—carrier absorption and related phenomena 
1.11 elastooptic, electrooptic, and nonlinear optical properties 
1.11.1 elastooptic effect 
1.11.2 linear electrooptic constant 
1.11.3 quadratic electrooptic constant 
1.11.4 franz—keldysh effect 
1.11.5 nonlinear optical constant 
1.12 carrier transport properties 
1.12.1 low—field mobility: electrons 
1.12.2 low—field mobility: holes 
1.12.3 high—field transport: electrons 
1.12.4 high—field transport: holes 
1.12.5 minority—carrier transport: electrons in ρ—type materials 
1.12.6 minority—carrier transport: holes in n—type materials 
1.12.7 impact ionization coefficient 

2 silicon (si) 
2.1 structural properties 
2.1.1 ionicity 
2.1.2 elemental isotopic abundance and molecular weight 
2.1.3 crystal structure and space group 
2.1.4 lattice constant and its related parameters 
2.1.5 structural phase transition 
2.1.6 cleavage plane 
2.2 thermal properties 
2.2.1 melting point and its related parameters 
2.2.2 specific heat 
2.2.3 debye temperature 
2.2.4 thermal expansion coefficient 
2.2.5 thermal conductivity and diffusivity 
2.3 elastic properties 
2.3.1 elastic constant 
2.3.2 third—order elastic constant 
2.3.3 young's modulus, poisson's ratio, and similar 
2.3.4 microhardness 
2.3.5 sound velocity 
2.4 phonons and lattice vibronic properties 
2.4.1 phonon dispersion relation 
2.4.2 phonon frequency 
2.4.3 mode gruneisen parameter 
2.4.4 phonon deformation potential 
2.5 collective effects and related properties 
2.5.1 piezoelectric constant 
2.5.2 frohlich coupling constant 
2.6 energy—band structure: energy—band gaps 
2.6.1 basic properties 
2.6.2 e0—gap region 
2.6.3 higher—lying direct gap 
2.6.4 lowest indirect gap 
2.6.5 conduction—valley energy separation 
2.6.6 direct—indirect—gap transition pressure 
2.7 energy—band structure: electron and hole effective masses 
2.7.1 electron effective mass: γ valley 
2.7.2 electron effective mass: satellite valley 
2.7.3 hole effective mass 
2.8 electronic deformation potential 
2.8.1 intravalley deformation potential: γ point 
2.8.2 intravalley deformation potential: high—symmetry points 
2.8.3 intervalley deformation potential 
2.9 electron affinity and schottky barrier height 
2.9.1 electron affinity 
2.9.2 schottky barrier height 
2.10 optical properties 
2.10.1 summary of optical dispersion relations 
2.10.2 the reststrahlen region 
2.10.3 at or near the fundamental absorption edge 
2.10.4 the interband transition region 
2.10.5 free—carrier absorption and related phenomena 
2.11 elastooptic, electrooptic, and nonlinear optical properties 
2.11.1 elastooptic effect 
2.11.2 linear electrooptic constant 
2.11.3 quadratic electrooptic constant 
2.11.4 franz—keldysh effect 
2.11.5 nonlinear optical constant 
2.12 carrier transport properties 
2.12.1 low—field mobility: electrons 
2.12.2 low—field mobility: holes 
2.12.3 high—field transport: electrons 
2.12.4 high—field transport: holes 
2.12.5 minority—carrier transport: electrons in p—type materials 
2.12.6 minority—carrier transport: holes in n—type materials 
2.12.7 impact ionization coefficient 

3 germanium (c) 
3.1 structural properties 
3.1.1 ionicity 
3.1.2 elemental isotopic abundance and molecular weight 
3.1.3 crystal structure and space group 
3.1.4 lattice constant and its related parameters 
3.1.5 structural phase transition 
3.1.6 cleavage plane 
3.2 thermal properties 
3.2.1 melting point and its related parameters 
3.2.2 specific heat 
3.2.3 debye temperature 
3.2.4 thermal expansion coefficient 
3.2.5 thermal conductivity and diffusivity 
3.3 elastic properties 
3.3,1 elastic constant 
3.3.2 third—order elastic constant 
3.3.3 young's modulus, poisson's ratio, and similar 
3.3.4 microhardness 
3.3.5 sound velocity 
3.4 phonons and lattice vibronic properties 
3.4.1 phonon dispersion relation 
3.4.2 phonon frequency 
3.4.3 mode gruneisen parameter 
3.4.4 phonon deformation potential 
3.5 collective effects and related properties 
3.5.1 piezoelectric constant 
3.5.2 frohlich coupling constant 
3.6 energy—band structure: energy—band gaps 
3.6.1 basic properties 
3.6.2 eo—gap region 
3.6.3 higher—lying direct gap 
3.6.4 lowest indirect gap 
3.6.5 conduction—valley energy separation 
3.6.6 direct—indirect—gap transition pressure 
3.7 energy—band structure: electron and hole effective masses 
3.7.1 electron effective mass: f valiey 
3.7.2 electron effective mass: satellite valley 
3.7.3 hole effective mass 
3.8 electronic deformation potential 
3.8.1 intravalley deformation potential: γ point 
3.8.2 intravalley deformation potential: high—symmetry points 
3.8.3 intervalley deformation potential 
3.9 electron affinity and schottky barrier height 
3.9.1 electron affinity 
3.9.2 schottky barrier height 
3.10 optical properties 
3.10.1 summary of optical dispersion relations 
3.10.2 the reststrahlen region 
3.10.3 at or near the fundamental absorption edge 
3.10.4 the interband transition region 
3.10.5 free—carrier absorption and related phenomena 
3.11 elastooptic, electrooptic, and nonlinear optical properties 
3.11.1 elastooptic effect 
3.11.2 linear electrooptic constant 
3.11.3 quadratic electrooptic constant 
3.11.4 franz—keldysh effect 
3.11.5 nonlinear optical constant 
3.12 carrier transport properties 
3.12.1 low—field mobility: electrons 
3.12.2 low—field mobility: holes 
3.12.3 high—field transport: electrons 
3.12.4 high—field transport: holes 
3.12.5 minority—carrier transport: electrons in p—type materials 
3.12.6 minority—carrier transport: holes in n—type materials 
3.12.7 impact ionization coefficient 

4 gray tin (a—sn) 
4.1 structural properties 
4.1.1 lonicity 
4.1.2 elemental isotopic abundance and molecular weight 
4.1.3 crystal structure and space group 
4.1.4 lattice constant and its related parameters 
4.1.5 structural phase transition 
4.1.6 cleavage plane 
4.2 thermal properties 
4.2.1 melting point and its related parameters 
4.2.2 specific heat 
4.2.3 debye temperature 
4.2.4 thermal expansion coefficient 
4.2.5 thermal conductivity and diffusivity 
4.3 elastic properties 
4.3.1 elastic constant 
4.3.2 third—order elastic constant 
4.3.3 young's modulus, poisson's ratio, and similar 
4.3.4 microhardness 
4.3.5 sound velocity 
4.4 phonons and lattice vibronic properties 
4.4.1 phonon dispersion relation 
4.4.2 phonon frequency 
4.4.3 mode gruneisen parameter 
4.4.4 phonon deformation potential 
4.5 collective effects and related properties 
4.5.1 piezoelectric constant 
4.5.2 frohlich coupling constant 
4.6 energy—band structure: energy—band gaps 
4.6.1 basic properties 
4.6.2 eo—gap region 
4.6.3 higher—lying direct gap 
4.6.4 lowest indirect gap 
4.6.5 conduction—valley energy separation 
4.6.6 direct—indirect—gap transition pressure 
4.7 energy—band structure: electron and hole effective masses 
4.7.1 electron effective mass: γ valley 
4.7.2 electron effective mass: satellite valley 
4.7.3 hole effective mass 
4.8 electronic deformation potential 
4.8.1 intravalley deformation potential: γ point 
4.8.2 intravalley deformation potential: high—symmetry points 
4.8.3 intervalley deformation potential 
4.9 electron affinity and schottky barrier height 
4.9.1 electron affinity 
4.9.2 schottky barrier height 
4.10 optical properties 
4.10.1 summary of optical dispersion relations 
4.10.2 the reststrahlen region 
4.10.3 at or near the fundamental absorption edge 
4.10.4 the interband transition region 
4.10.5 free—carrier absorption and related phenomena 
4.11 elastooptic, electrooptic, and nonlinear optical properties 
4.11.1 elastooptic effect 
4.11.2 linear electrooptic constant 
4.11.3 quadratic electrooptic constant 
4.11.4 franz—keldysh effect 
4.11.5 nonlinear optical constant 
4.12 carrier transport properties 
4.12.1 low—field mobility: electrons 
4.12.2 low—field mobility: holes 
4.12.3 high—field transport: electrons 
4.12.4 high—field transport: holes 
4.12.5 minority—carrier transport: electrons in p—type materials 
4.12.6 minority—carrier transport: holes in n—type materials 
4.12.7 impact ionization coefficient 
…… 
5 cubic silicon carbide (3c—sic) 
6 hexagonal silicon carbide (2h—, 4h—, 6h—sic, etc.) 
7 rhombohedral silicon carbide (15r—, 21r—, 24r—sic, etc.)
展开全部
商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服