本类五星书更多>
-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
深度学习
-
>
Unreal Engine 4蓝图完全学习教程
-
>
深入理解计算机系统-原书第3版
-
>
Word/Excel PPT 2013办公应用从入门到精通-(附赠1DVD.含语音视频教学+办公模板+PDF电子书)
买过本商品的人还买了
张量数据的特征提取与分类
¥15.4¥48.0全民阅读-家庭养花实用宝典(精装)
¥36.6¥59.0实用载货汽车线束图解-第3版
¥75.2¥99.0AutoCAD 2016中文版新手从入门到精通-(含1DVD)
¥34.2¥69.8桃名优品种与配套栽培
¥5.7¥19.0
机器学习导论-原书第3版 版权信息
- ISBN:9787111521945
- 条形码:9787111521945 ; 978-7-111-52194-5
- 装帧:暂无
- 册数:暂无
- 重量:暂无
- 所属分类:>
机器学习导论-原书第3版 本书特色
本书是关于机器学习这一主题内容全面的教科书,涵盖了通常在机器学习导论中并不包括的广泛题材。对机器学习的定义和应用实例进行了介绍,涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、维度归约、聚类、非参数方法、决策树、线性判别式、多层感知器、局部模型、核机器、图方法、隐马尔可夫模型、贝叶斯估计、组合多学习器、增强学习以及机器学习实验的设计与分析等。
机器学习导论-原书第3版 内容简介
本书是关于机器学习这一主题内容全面的教科书,涵盖了通常在机器学习导论中并不包括的广泛题材。对机器学习的定义和应用实例进行了介绍,涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、维度归约、聚类、非参数方法、决策树、线性判别式、多层感知器、局部模型、核机器、图方法、隐马尔可夫模型、贝叶斯估计、组合多学习器、增强学习以及机器学习实验的设计与分析等。
机器学习导论-原书第3版 目录
目录introduction to machine learning,third edition出版者的话译者序前言符号说明第1章引言111什么是机器学习112机器学习的应用实例2121学习关联性2122分类3123回归5124非监督学习6125增强学习713注释814相关资源1015习题1116参考文献12第2章监督学习1321由实例学习类1322vc维1623概率近似正确学习1624噪声1725学习多类1826回归1927模型选择与泛化2128监督机器学习算法的维2329注释24210习题25211参考文献26第3章贝叶斯决策理论2731引言2732分类2833损失与风险2934判别式函数3035关联规则3136注释3337习题3338参考文献36第4章参数方法3741引言3742*大似然估计37421伯努利密度38422多项式密度38423高斯(正态)密度3943评价估计:偏倚和方差3944贝叶斯估计4045参数分类4246回归4447调整模型的复杂度:偏倚/方差两难选择4648模型选择过程4949注释51410习题51411参考文献53第5章多元方法5451多元数据5452参数估计5453缺失值估计5554多元正态分布5655多元分类5756调整复杂度6157离散特征6258多元回归6359注释64510习题64511参考文献66第6章维度归约6761引言6762子集选择6763主成分分析7064特征嵌入7465因子分析7566奇异值分解与矩阵分解7867多维定标7968线性判别分析8269典范相关分析85610等距特征映射86611局部线性嵌入87612拉普拉斯特征映射89613注释90614习题91615参考文献92第7章聚类9471引言9472混合密度9473k均值聚类9574期望*大化算法9875潜在变量混合模型10076聚类后的监督学习10177谱聚类10278层次聚类10379选择簇个数104710注释104711习题105712参考文献106第8章非参数方法10781引言10782非参数密度估计108821直方图估计108822核估计109823k*近邻估计11083推广到多变元数据11184非参数分类11285精简的*近邻11286基于距离的分类11387离群点检测11588非参数回归:光滑模型116881移动均值光滑116882核光滑117883移动线光滑11989如何选择光滑参数119810注释120811习题121812参考文献122第9章决策树12491引言12492单变量树125921分类树125922回归树12893剪枝13094由决策树提取规则13195由数据学习规则13296多变量树13497注释13598习题13799参考文献138第10章线性判别式139101引言139102推广线性模型140103线性判别式的几何意义1401031两类问题1401032多类问题141104逐对分离142105参数判别式的进一步讨论143106梯度下降144107逻辑斯谛判别式1451071两类问题1451072多类问题147108回归判别式150109学习排名1511010注释1521011习题1521012参考文献154第11章多层感知器155111引言1551111理解人脑1551112神经网络作为并行处理的典范156112感知器157113训练感知器159114学习布尔函数160115多层感知器161116作为普适近似的mlp162117向后传播算法1631171非线性回归1631172两类判别式1661173多类判别式166
展开全部
书友推荐
本类畅销
-
十二字节
¥42.4¥69 -
前瞻交互:从语音、手势设计到多模融合
¥76.3¥109 -
人工智能
¥18.6¥55 -
人工智能技术商业应用场景实战
¥45.8¥79 -
4.23文创礼盒A款--“作家言我精神状态”
¥42.3¥206 -
4.23文创礼盒B款--“作家言我精神状态”
¥42.3¥206
京ICP备09013606号-3京信市监发[2002]122号海淀公安分局备案编号:1101083394