4.23文创礼盒,买2个减5元
欢迎光临中图网 请 | 注册
> >
基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版)

基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版)

出版社:清华大学出版社出版时间:2020-08-01
开本: 其他 页数: 452
本类榜单:自然科学销量榜
中 图 价:¥111.8(7.5折) 定价  ¥149.0 登录后可看到会员价
加入购物车 收藏
运费6元,满69元免运费
?快递不能达地区使用邮政小包,运费14元起
云南、广西、海南、新疆、青海、西藏六省,部分地区快递不可达
本类五星书更多>

基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版) 版权信息

  • ISBN:9787302546368
  • 条形码:9787302546368 ; 978-7-302-54636-8
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版) 本书特色

《基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版)》将很有可能成为国内外**本讲述在微米和亚微米尺度基于连续和离散位错机制的晶体塑性理论和计算专著。 2018年书稿涉及的研究工作获得教育部自然科学一等奖、作者柳占立和崔一南分别获得2013年和2018年的国家青年千人计划资助。 书稿获2019年度国家科学技术学术著作出版基金资助。

基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版) 内容简介

《基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版)》展示了在微米和亚微米尺度基于位错机制的晶体塑性理论模型和计算方法,便于理解“越细越硬”的强度尺寸效应。相比普遍认知的预应变引起硬化和退火引起软化,在小尺度材料上展示了相反的结果,即预应变引起软化和退火引起硬化。在晶体中观测到的反常规本构关系,例如,屈服强度的尺度依赖性,微柱压缩过程中的间隙塑性流动。这些新的反常规的力学特点改变了人们对连续介质力学和塑性流动行为的传统认识。

基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版) 目录

Chapter I: Background and Significance I.I Framework of This Book 1.2 Polycrystalline and Single-Crystal Plasticity 1.3 Size Effect on Crystal Plasticity at Micron and Submicron Scales 1.3.1 Size Effect Observed in Material Experiments 1.3.2 Size Effect of Yield Stress 1.3.3 Strain Burst and Dislocation Avalanches 1.3.4 Size Effect of Submicron Crystal Under Cyclic Loading 1.3.5 Size Effect of Deformation Morphology of Compressed Micropillars 1.4 Method to Bridge Size Effect 1.4.1 Supersurface From Macro to Micron 1.4.2 Nonlocal Crystal Plasticity 1.4.3 Discrete Dislocation Dynamics Simulation Method 1.5 Content of This Book Part 1 Continuum Dislocation Mechanlsm-Based Crystal Plasticity.. Chapter 2: Fundamental Conventional Concept of Plasticity Constitution 2.1 Introduction 2.2 One-Dimensional Plasticity 2.2.1 Isotropic Hardening 2.2.2 Kinematic Hardening 2.2.3 Rate-Dependent Plasticity 2.3 Multiaxial Plasticity 2.3.1 Hypoelastic-Plastic Materials 2.3.2 Small Strain Plasticity 2.4 J2 Flow Theory Plasticity 2.4.1 Kirchhoff Stress Formulation of Je Flow Theory Plasticity 2.4.2 Extension to Kinematic Hardening 2.4.3 Large Strain Viscoplasticity 2.5 Rock-Soil Constitutive Model 2.5.1 Mohr-Coulomb Constitutive Model 2.5.2 Drucker-Prager Constitutive Model 2.6 Gurson Model for Porous Elastic-Plastic Solids 2.7 Corotational Stress Formulation 2.8 Summary Chapter 3: Strain Gradient Plasticity Theory at the Microscale 3.1 Size Dependence of Material Behavior at the Microscale 3.2 Couple Stress Theory 3.2.1 Couple Stresses 3.2.2 Rotation and Rotation Gradient 3.2.3 Virtual Work Principle 3.2.4 Constitutive Relation of Couple Stress Strain Gradient Plasticity Theory 3.2.5 Principles of Minimum Potential Energy and Minimum Complementary Energy 3.2.6 Equivalent Stress and Equivalent Strain 3.3 Stretch and Rotation Gradient Theory 3.3.1 Strain Gradient Tensor 3.3.2 Decomposition of Strain Gradient Partial Tensor 77t and Total Equivalent Strain Ess 3.3.3 Constitutive Relation of Stretch and Rotation Gradient Strain Gradient Plastic Theory 3.4 Microscale Mechanism-Based Strain Gradient Plasticity Theory 3.4.1 Experimental Law for Strain Gradient Plasticity Theory 3.4.2 Motivation for Microscale Mechanism-Based Strain Gradient Plasticity Theory 3.4.3 Microscale Computation Framework 3.4.4 Dislocation Model 3.4.5 Constitutive Equation of Mechanism-Based Strain Gradient Plasticity Theory 3.4.6 Size of Cell Element at the Microscale 3.4.7 Mechanism-Based Strain Gradient Plasticity Predicts Stress Singularity at Crack Tip 3.5 Summary Chapter 4: Dislocation-Based Single-Crystal Plasticity Model 4.1 Introduction 4.2 General Constitutive Model for Single Crystals 4.2.1 Basic Kinematics of Crystal Plasticity 4.2.2 Slip Rate and Dislocation Density Evolution 4.2.3 Plastic Stress Required for Dislocation Motion 4.2.4 Update of Cauchy Stress in Single-Crystal Plasticity 4.3 Higher-Order Dislocation Dynamics-Based Crystal Plasticity Model 4.3.1 Governing Equations of Macroforces 4.3.2 Governing Equations of Microforces 4.3.3 Coupling of Macroscopic and Microscopic Equations 4.4 Size and Bauschinger Effect in Passivated Thin Films 4.4.1 Two Hardening Mechanisms Caused by Geometrically Necessary Dislocations 4.4.2 Model Description 4.4.3 Size Effect of Passivated Thin Films Under Tension 4.4.4 Bauschinger Effect of Passivated Thin Films During Unloading 4.5 Summary Chapter 5: Revealing the Size Effect in Micropillars by Dislocation-Based Crystal Plasticity Theory 5.1 Introduction 5.2 Strain Burst and Size Effect in Compression Micropillars 5.2.1 Stochastic Crystal Plasticity Model 5.2.2 Determination of Size-Dependent Slip Resistance 5.2.3 Strain Bursts at Small Scales 5.2.4 Application to the Compression of Single-Crystal Ni Micron Pillars 5.3 Size-Dependent Deformation Morphology of Micropillars 5.3.1 Simulation Setups 5.3.2 Size-Dependent Deformation Morphology 5.3.3 Role of Short-Range Back Stress 5.3.4 Critical Transition Size 5.3.5 Discussions of Material Softening 5.4 Summary Chapter 6: Microscale Crystal Plasticity Model Based on Phase Field Theory. 6.1 Introduction 6.2 Theoretical Model 6.2.1 Basic Equations of Crystal Plasticity Theory 6.2.2 Phase Field Description of Plastic Slip 6.2.3 Stored Energy and Dissipated Energy 6.2.4 Principle of Virtual Power 6.2.5 Coupled Balance Equations 6.2.6 Finite Element Discretization 6.3 Computational Demonstrations 6.3.1 Dislocation Near a Free Surface 6.3.2 Dislocation in an Anisotropic Material 6.3.3 Dislocation Near a Bimaterial Interface 6.4 Applications to Heteroepitaxial Structures 6.4.1 Critical Shell Thickness of Core-Shell Nanopillars 6.4.2 Dislocations in Heteroepitaxial Thin Films 6.5 Summary Part 2 Discrete Dislocation Mechanism-Based Crystal Plasticity Chapter 7: Discrete-Continuous Model of Crystal Plasticity at the Submicron Scale 7.1 Discrete Dislocation Dynamics 7.1.1 Dislocation Kinetic Equation 7.1.2 Dislocation Interactions and Topology Update 7.1.3 Dislocation Cross-Slip 7.1.4 Current Three-Dimensional Discrete Dislocation Dynamics Simulations 7.2 Coupling Discrete Dislocation Dynamics With Finite Element Method 7.2.1 Superposition Method 7.2.2 Discrete-Continuous Model 7.3 Improved Discrete-Continuous Model 7.3.1 Efficient Regularization Method 7.3.2 Image Force Calculation 7.3.3 Finite Deformation 7.4 Application to Heteroepitaxial Films 7.4.1 Thermoelastic Calculation to Determine Internal Stress Field 7.4.2 Influence of Substrate Thickness on Dislocation Behavior 7.5 Application to Irradiated Materials 7.6 Summary Chapter 8: Single-Arm Dislocation Source (SAS)-Controlled Submicron Plasticity 8.1 Introduction 8.2 Single-Arm Dislocation Source Mechanisms at Submicron Scales 8.3 Single-Arm Dislocation Source-Controlled Strain Burst and Dislocation Avalanche 8.4 Description of Single-Arm Dislocation Source-Controlled Plasticity 8.4.1 Single-Ann Dislocation Source-Controlled Dislocation Density Evolution 8.4.2 Effective Single-Arm Dislocation Source Length 8.4.3 Single-Arm Dislocation Source-Controlled Flow Stress 8.5 Summary Chapter 9: Confined Plasticity in Micropillars 9.1 Insights into Coated Micropillar Plasticity 9.1.1 Stress-Strain Curves in Coated and Uncoated Pillars 9.1.2 Dislocation Source Mechanism in Coated Micropillars 9.1.3 Back Stress in Coated Micropillars 9.1.4 Evolution of Mobile and Trapped Dislocation 9.2 Implications for Crystal Plasticity Model 9.3 Theoretical Models for Coated Micropillars 9.3.1 Dislocation Density Evolution Model 9.3.2 Prediction of Stress-Strain Curve 9.4 Brief Discussion on Coating Failure Mechanism 9.4.1 High Hoop Stress of Coated Layer 9.4.2 Transmission Effect of Dislocations Across Coating 9.5 Summary Chapter 10: Mechanical Annealing Under Low-Amplitude Cyclic Loading 10.1 Introduction 10.2 Cyclic Behavior of Collective Dislocations 10.3 Cyclic Instability of Dislocation Junction 10.3.1 Glissile Dislocation Junction 10.3.2 Sessile Dislocation Junction 10.4 Cyclic Enhanced Dislocation Annihilation Mechanism 10.5 Dislocation Density Influenced by Cyclic Slip Irreversibility 10.6 Critical Size for Mechanical Annealing 10.7 Summary Chapter 11: Strain Rate Effect on Deformation of Single Crystals at Submicron Scale 11.1 Introduction 11.2 Strain Rate Effect on Flow Stress in Single-Crystal Copper Under Compression Loading 11.2.1 Strain Rate Effect of Submicron Copper Pillars Under Uniaxial Compression 11.2.2 Strain Rate Effect of Dislocation Evolution in Copper Cubes Under Hydrostatic Pressure 11.3 Strain Rate Effect on Dynamic Deformation of Single-Crystal Copper Under Tensile Loading 11.3.1 Resolution of Discrete Dislocation Dynamics 11.3.2 Coupling Dislocation Dynamics Plasticity With Finite Element 11.3.3 Model Description and Simulation Results 11.4 Shock-Induced Deformation and Dislocation Mechanisms in Single-Crystal Copper 11.4.1 Dynamic Mechanical Behavior Corresponding to Dislocation Microstructure 11.4.2 Dynamic Multiscale Discrete Dislocation Plasticity Model 11.4.3 Coarse-Grained Homogeneous Nucleation Model 11.4.4 Shock-Induced Plasticity at the Submicron Scale 11.4.5 Discussion and Conclusion 11.5 Summary Chapter 12: Glide-Climb Coupling Model and Temperature Effect on Microscale Crystal Plasticity 12.1 Introduction 12.2 Coupled-Dislocation Glide-Climb Model-Based Analysis 12.2.1 Development of Vacancy Diffusion-Based Dislocation Climb Model 12.2.2 Incorporating the Dislocation Climb Model Into Three-Dimensional Discrete Dislocation Dynamics 12.2.3 Validation of Dislocation Climb Model 12.2.4 Coupled Glide-Climb Model Based on Three-Dimensional Discrete Dislocation Dynamics 12.3 Study of Helical Dislocations 12.3.1 Formation of Helical Dislocation 12.3.2 Comparison With Theoretical Solution 12.3.3 Influential Factors for Helical Dislocation Configuration 12.4 Discrete-Continuous Method for Coupling Dislocation Glide-Climb 12.4.1 Dislocation Climb Model in Discrete-Continuous Method 12.4.2 Localize Vacancy Concentration Field of Discrete Dislocation Dynamics Segments to Finite Element Method Nodes 12.4.3 Transferring Vacancy Flux From Finite Element Method Back to Discrete Dislocation Dynamics Segments 12.4.4 Coupled Dislocation Glide-Climb Model 12.5 High-Temperature Annealing Hardening 12.5.1 Brief Description of the Experiment 12.5.2 Simulation Procedures 12.5.3 Simulation Results and Analyses 12.5.4 Microstructural Analysis 12.6 Summary Appendix 1: Single-Crystal Material Model and Pole Figures References Index
展开全部

基于位错机制的微米-亚微米尺度晶体塑性理论和计算(英文版) 作者简介

庄茁,清华大学航天航空学院教授,先进力学与材料中心主任,国防973项目首席科学家。在动态断裂力学、非线性有限元和亚微米尺度晶体塑性的理论和计算等方面做出国际l先的科学成果;在飞机穿盖弹射救生系统、西气东输管线韧性止裂和页岩水力压裂体积改造等国家重大工程中做出重要的技术成果。发表学术论文280余篇,含SCI期刊130余篇;出版18部书。获得国j级和省部级的科技和教育成果奖励10余项。中国力学学会常务理事、计算力学专业委员会主任委员。国际计算力学学会理事。教育部高等学校力学类专业教学指导委员会副主任委员。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
返回顶部
中图网
在线客服