超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
欢迎光临中图网 请 | 注册

Python金融数据分析

出版社:机械工业出版社出版时间:2018-03-01
开本: 16开 页数: 240
中 图 价:¥33.8(4.9折) 定价  ¥69.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口
有划线标记、光盘等附件不全详细品相说明>>
本类五星书更多>
买过本商品的人还买了

Python金融数据分析 版权信息

Python金融数据分析 本书特色

本书将介绍股票、期权、利率衍生品等金融工具定价方法,如何根据市场指数进行大数据分析,以及如何使用NoSQL存储tick数据,可解决建模、交易策略优化和风险管理等金融领域的复杂问题。本书面向本科生、研究生、算法开发的初学者以及使用Python进行定量研究的金融领域软件开发人员。你无需精通Python,熟悉其基本使用情况即可。

Python金融数据分析 内容简介

本书将介绍股票、期权、利率衍生品等金融工具定价方法,如何根据市场指数进行大数据分析,以及如何使用NoSQL存储tick数据,可解决建模、交易策略优化和风险管理等金融领域的复杂问题。本书面向本科生、研究生、算法开发的初学者以及使用Python进行定量研究的金融领域软件开发人员。你无需精通Python,熟悉其基本使用情况即可。

Python金融数据分析 目录

目录
前言
第1章Python在金融中的应用
1.1Python适合我吗
1.1.1免费 开源
1.1.2高级、强大、灵活的编程语言
1.1.3丰富的标准库
1.2面向对象编程与函数式编程
1.2.1面向对象式方法
1.2.2函数式方法
1.2.3我该使用哪种方法
1.3我该使用哪个版本的Python
1.4IPython简介
1.4.1安装IPython
1.4.2使用pip
1.4.3IPython Notebook
1.4.4Notebook单元格
1.4.5IPython Notebook简单的练习
1.4.6Notebook与金融
1.5总结
第2章金融中的线性问题
2.1资本资产定价模型与证券市场线
2.2套利定价模型
2.3因子模型的多元线性回归
2.4线性*优化
2.4.1安装PuLP
2.4.2一个简单的线性优化问题
2.4.3线性规划的结果
2.4.4整数规划
2.5使用矩阵解线性方程组
2.6LU分解
2.7Cholesky分解
2.8QR分解
2.9总结
第3章非线性与金融
3.1非线性建模
3.2非线性模型举例
3.2.1隐含波动率模型
3.2.2马尔可夫机制转换模型
3.2.3门限自回归模型
3.2.4平滑转换模型
3.3非线性模型求根算法概述
3.4增量法
3.5二分法
3.6牛顿迭代法
3.7割线法
3.8求根法的结合使用
3.9利用SciPy求解
3.9.1SciPy求根标量函数
3.9.2通用非线性求解器
3.10总结
第4章利用数值方法为衍生品定价
4.1什么是期权
4.2二叉树期权定价模型
4.2.1欧式期权定价
4.2.2编写StockOption类
4.2.3编写BinomialEuropeanOption类
4.2.4利用BinomialTreeOption类给美式期权定价
4.2.5CoxRossRubinstein模型
4.2.6LeisenReimer模型
4.3希腊值
4.4三叉树期权定价模型
4.5期权定价中的Lattice方法
4.5.1二叉树网格
4.5.2编写BinomialCRROption类
4.5.3三叉树网格
4.6有限差分法
4.6.1显式方法
4.6.2隐式方法
4.6.3CrankNicolson方法
4.6.4奇异障碍期权定价
4.6.5美式期权定价的有限差分
4.7隐含波动率模型
4.8总结
第5章利率及其衍生工具
5.1固定收益证券
5.2收益率曲线
5.3无息债券
5.4自助法构建收益率曲线
5.5远期利率
5.6计算到期收益率
5.7计算债券定价
5.8久期
5.9凸度
5.10短期利率模型
5.10.1Vasicek模型
5.10.2CoxIngersollRoss模型
5.10.3Rendleman and Bartter模型
5.10.4Brennan and Schwartz模型
5.11债券期权
5.11.1可赎回债券
5.11.2可回售债券
5.11.3可转换债券
5.11.4优先股
5.12可赎回债券定价
5.12.1Vasicek模型定价无息债券
5.12.2提前行权定价
5.12.3有限差分策略迭代法
5.12.4可赎回债券定价的其他影响因素
5.13总结
第6章利用Python分析欧洲斯托克 50指数波动率
6.1波动率指数衍生品
6.1.1STOXX与欧洲期货交易所
6.1.2EURO STOXX 50指数
6.1.3VSTOXX
6.1.4VIX
6.2获取EUROX STOXX 50指数和VSTOXX数据
6.3数据合并
6.4SX5E与V2TX的财务分析
6.5SX5E与V2TX的相关性
6.6计算VSTOXX子指数
6.6.1获取OESX数据
6.6.2计算VSTOXX子指数的公式
6.6.3VSTOXX子指数值的实现
6.6.4分析结果
6.7计算VSTOXX主指数
6.8总结
第7章大数据分析
7.1什么是大数据
7.2Hadoop
7.2.1HDFS
7.2.2YARN
7.2.3MapReduce
7.3大数据工具对我来说实用吗
7.4获取Apache Hadoop
7.4.1从Cloudera获取QuickStart VM
7.4.2获取VirtualBox
7.4.3在VirtualBox上运行Cloudera VM
7.5Hadoop中的字计数程序
7.5.1下载示例数据
7.5.2map程序
7.5.3reduce程序
7.5.4测试脚本
7.5.5在Hadoop上运行MapReduce
7.5.6使用Hue浏览HDFS
7.6Hadoop的金融实践
7.6.1从Yahoo! Finance获取IBM股票价格
7.6.2修改map程序
7.6.3使用IBM股票价格测试map程序
7.6.4运行MapReduce计算日内价格变化
7.6.5分析MapReduce结果
7.7NoSQL简介
7.7.1获取MongoDB
7.7.2创建数据目录并运行MongoDB
7.7.3获取PyMongo
7.7.4运行测试连接
7.7.5获取数据库
7.7.6获取集合
7.7.7插入文档
7.7.8获取单个文档
7.7.9删除文档
7.7.10批量插入文档
7.7.11统计集合文档
7.7.12查找文档
7.7.13文档排序
7.7.14结论
7.8总结
第8章算法交易
8.1什么是算法交易
8.2带有公共API的交易平台列表
8.3有没有*好的编程语言
8.4系统功能
8.5通过Interactive Brokers和IbPy进行算法交易
8.5.1获取Interactive Brokers的Trader WorkStation
8.5.2获取IbPy——IB API包装器
8.5.3指令路由机制
8.6构建均值回归算法交易系统
8.6.1设置主程序
8.6.2处理事件
8.6.3实现均值回归算法
8.6.4跟踪头寸
8.7使用OANDA API进行外汇交易
8.7.1什么是REST
8.7.2设置OANDA账户
8.7.3OANDA API使用方法
8.7.4获取oandapy——OAND AREST API包装器
8.7.5获取并解析汇率数据
8.7.6发送指令
8.8构建趋势跟踪外汇交易平台
8.8.1设置主程序
8.8.2处理事件
8.8.3实现趋势跟踪算法
8.8.4跟踪头寸
8.9风险价值模型
8.10总结
第9章回溯测试
9.1回溯测试概述
9.1.1回溯测试的缺陷
9.1.2事件驱动回溯测试系统
9.2设计并实施回溯测试系统
9.2.1TickData类
9.2.2MarketData类
9.2.3MarketDataSource类
9.2.4Order类
9.2.5Position类
9.2.6Strategy类
9.2.7MeanRe
展开全部

Python金融数据分析 作者简介

马伟明(James Ma Weiming),毕业于伊利诺理工大学斯图尔特商学院,获得金融学硕士学位。他编写了大量高频、低延时的开放源代码程序和工具。 在获得新加坡南洋理工大学计算机工程学士学位和南洋理工学院信息技术专业毕业证书后,James开始在新加坡工作。他从事过外汇和固定收益产品交易,还为一家基金销售平台开发移动应用程序。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服